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Abstract

We will review some group theory.

1 Lagrange’s Theorem

1.1 Basic group theory

Group G is a set of elements gi satisfying the four conditions below, relative
to some binary operation. We often use multiplicative notation (g1g2) or
additive notation (g1+g2) to represent the binary operation. For definiteness,
we use multiplicative notation below; however, one could replace xy with
b(x, y) below.

If the elements of G satisfy the following four properties, then G is a
group.

1. ∃e ∈ G s.t. ∀g ∈ G : eg = ge = g. (Identity.) We often write e = 1 for
multiplicative groups, and e = 0 for additive groups.

2. ∀x, y, z ∈ G : (xy)z = x(yz). (Associativity.)

3. ∀x ∈ G, ∃y ∈ G s.t. xy = yx = e. (Inverse.) We write y = x−1 for
multiplication, y = −x for addition.

4. ∀x, y ∈ G : xy ∈ G. (Closure.)
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If commutation holds (∀x, y ∈ G, xy = yx), we say the group is Abelian.
Non-abelian groups exist and are important. For example, consider the group
of N×N matrices with real entries and non-zero determinant. Prove this is a
group under matrix multiplication, and show this group is not commutative.

H is a subgroup of G if it is a group and its elements form a subset of those
of G. The identity of H is the same as the identity of G. Once you’ve shown
the elements of H are closed (ie, under the binary operation, b(x, y) ∈ H if
x, y ∈ H), then associativity in H follows from closure in H and associativity
in G.

For the application to Fermat’s Little Theorem you will need to know that
the set {1, x, x2, · · · xn−1} where n is the lowest positive integer s.t. xn = 1,
called the cyclic group, is indeed a subgroup of any group G containing x, as
well as n divides the order of G.

For a nice introduction to group theory see: M. Tinkham, Group Theory
and Quantum Mechanics, (McGraw-Hill, 1964) or S. Lang, Undergraduate
Algebra.

1.2 Lagrange’s Theorem

The theorem states that if H is a subgroup of G then |H| divides |G|.
First show that the set hH, i.e. all the elements of H premultiplied by

one element, is just H rearranged (Cayley’s theorem). By closure hH falls
within H. We only need to show that hhi can never equal hhj for two
different elements i 6= j. If it were true, since a unique h−1 exists we could
premultiply the equation hhi = hhj by h−1 to give hi = hj, which is false.
Therefore hhi 6= hhj, and we have guaranteed a 1-to-1 mapping from H to
hH, so hH = H.

Next we show that the sets giH and gjH must either be completely dis-
joint, or identical. Assume there is some element in both. Then gih1 = gjh2.
Multiplying on the right by h−1

i ∈ H (since H is a subgroup) gives gi =
gjh2h

−1
1 . As H is a subgroup, ∃h3 ∈ H such that h = h2h

−1
1 . Thus gi = gjh3.

Therefore, as h3H = H, giH = gjh3H = gjH, and we see if the two sets
have one element in common, they are identical. We call a set gH a coset
(actually, a left coset) of H.

Clearly

G =
⋃

g∈G

gH (1)
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Why do we have an equality? As g ∈ G and H ⊂ G, every set on the
right is contained in G. Further, as e ∈ H, given g ∈ G, g ∈ gH. Thus, G is
a subset of the right side, proving equality.

There are only finitely many elements in G. As we go through all g in G,
we see if the set gH equals one of the sets already in our list (recall we’ve
shown two cosets are either identical or disjoint). If the set equals something
already on our list, we do not include it; if it is new, we do. Continuing this
process, we obtain

G =
k⋃

i=1

giH (2)

for some finite k. If H = {e}, k is the number of elements of G; in general,
however, k will be smaller.

Each set giH has |H| elements. Thus, |G| = k|H|, proving |H| divides
|G|.

2 Quotient groups

Say we have a finite Abelian group G (this means for all x, y ∈ G, xy = yx)
of order m which has a subgroup H of order r. We will use multiplication as
our group operation. Recall the coset of an element g ∈ G is defined as the
set of elements gH = g{h1, h2, · · · , hr}. Since G is Abelian (commutative)
then gH = Hg and we will make no distinction between left and right cosets
here.

The quotient group (or factor group), symbolized by G/H, is the group
formed from the cosets of all elements g ∈ G. We treat each coset giH as an
element, and define the multiplication operation as usual as giHgjH. Why
do we need G to be Abelian? The reason is we can then analyze giHgjH,
seeing that it equals gigjHH. We will analyze this further when we prove
that the set of cosets is a group.

There are several important facts to note. First, if G is not Abelian, then
the set of cosets might not be a group. Second, recall we proved the coset
decomposition rule: given a finite group G (with n elements) and a subgroup
H (with r elements) then there exist elements g1 through gk such that

G =
k⋃

i=1

giH. (3)
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The choices for the gi’s is clearly not unique. If g1 through gk work, so
do g1h1 through gkhk, where hi is any element of H. Recall this was proved
by showing any two cosets are either distinct or identical.

We will show below that, for G Abelian, the set of cosets is a group. Note,
however, that while it might at first appear that there are many different
ways to write the coset group, they really are the same. For example, the
cosets gH and gh1h

4
2h3H are equal. This is similar to looking at integers

mod n; mod 12, the integers 5, −7 and 19 are all equal, even though they
look different.

We now prove that the set of cosets is a group (for G Abelian).
Closure. By commutivity giHgjH = gigjHH. What is “HH”? Just

the set of all r2 possible combinations of elements of H. By closure, and
the existence of the identity, this just gives H again (recall no element in
a group can appear more than once—duplicates are removed). Therefore
giHgjH = gigjH. Now, as G is a group and is closed, gigj ∈ G. Thus, there
is a α such that gigj ∈ gαH (as G =

⋃k
β=1 gβH. Therefore, there is an h ∈ H

such that gigj = gαh, which implies gigjH = gαhH = gαH. Thus, the set
of cosets is closed under coset multiplication. Note, however, that while the
coset gigjH is in our set of cosets, it may be written differently.

Identity. If e is identity of G, then eHgiH = giH and giHeH = giH, so
eH is the identity of this quotient group.

Associativity. Since as you may have noticed, the quotient group ele-
ments behave just like those of G, associativity follows from that of G.

Inverse. It is easy to guess g−1H is the inverse of gH. Check it:
g−1HgH = g−1gH = eH = identity, also true the other way round of
course by commutativity. Unfortunately, g−1H might not be listed as one
of our cosets! Thus, we must be a little more careful. Fortunately, as
g−1 ∈ G =

⋃k
β=1 gβH, there is an α such that g−1 ∈ gαH. Then, there

is an h ∈ H with g−1 = gαh. Thus, g−1 = gαhH = gαH, and direct calcula-
tion will show that the coset gαH is the inverse (under coset multiplication)
of gH.

4


